Kafka Summit Logo
Organized by

Kafka Summit NYC 2019

April 2, 2019 | New York City


Streaming Design Patterns Using Alpakka Kafka Connector

Session Level: Beginner

Do you ever feel that your stream processor gets in the way of expressing business requirements? Most processors are frameworks, which are highly opinionated in the design and implementation of apps. Performing Complex Event Processing invariably leads to calling out to other technologies, but what if that integration didn’t require an RPC call or could be modeled into your stream itself? This talk will explore how to build rich domain, low latency, back-pressured, and stateful streaming applications that require very little infrastructure, using Akka Streams and the Alpakka Kafka connector.

We will explore how Alpakka Kafka maps to Kafka features in order to provide a comprehensive understanding of how to build a robust streaming platform. We’ll explore transactional message delivery, defensive consumer group rebalancing, stateful stages, and state durability/persistence. Akka Streams is built on top of Akka, an asynchronous messaging-driven middleware toolkit that can be used to build Erlang-like Actor Systems in Java or Scala. It is used as a JVM library to facilitate common streaming semantics within an existing or standalone application. It’s different from other stream processors in several ways. It natively supports back-pressure flow control inside a single JVM instance or across distributed systems to help prevent overloading downstream infrastructure. It’s perfect for modeling Complex Event Processing with its easy integration into existing apps and Akka Actor systems. Also, unlike most acyclic stream processors, Akka Streams can support sophisticated pipelines, or Graphs, by allowing the user to model cycles (loops) when there’s a need.

We use cookies to understand how you use our site and to improve your experience. Click here to learn more or change your cookie settings. By continuing to browse, you agree to our use of cookies.